Feel++

Geometry

Points

Current Point:

Feel++ Keyword

Math Object

Description

Dimension

P()

\$\overrightarrow{P}\$

\$(P_x, P_y, P_z)^T\$

\$d \times 1\$

Px()

\$P_x\$

\$x\$ coordinate of \$\overrightarrow{P}\$

\$1 \times 1\$

Py()

\$P_y\$

\$y\$ coordinate of \$\overrightarrow{P}\$ (value is 0 in 1D)

\$1 \times 1\$

Pz()

\$P_z\$

\$z\$ coordinate of \$\overrightarrow{P}\$ (value is 0 in 1D and 2D)

\$1 \times 1\$

Element Barycenter Point:

Feel++ Keyword Math Object Description Dimension

C()

\$\overrightarrow{C}\$

\$(C_x, C_y, C_z)^T\$

\$d \times 1\$

Cx()

\$C_x\$

\$x\$ coordinate of \$\overrightarrow{C}\$

\$1 \times 1\$

Cy()

\$C_y\$

\$y\$ coordinate of \$\overrightarrow{C}\$ (value is 0 in 1D)

\$1 \times 1\$

Cz()

\$C_z\$

\$z\$ coordinate of \$\overrightarrow{C}\$ (value is 0 in 1D and 2D)

\$1 \times 1\$

Normal at Current Point:

Feel++ Keyword

Math Object

Description

Dimension

N()

\$\overrightarrow{N}\$

\$(N_x, N_y, N_z)^T\$

\$d \times 1\$

Nx()

\$N_x\$

\$x\$ coordinate of \$\overrightarrow{N}\$

\$1 \times 1\$

Ny()

\$N_y\$

\$y\$ coordinate of \$\overrightarrow{N}\$ (value is 0 in 1D)

\$1 \times 1\$

Nz()

\$N_z\$

\$z\$ coordinate of \$\overrightarrow{N}\$ (value is 0 in 1D and 2D)

\$1 \times 1\$

Geometric Transformations

Jacobian Matrix

You can access to the jacobian matrix, \$J\$, of the geometric transformation, using the keyword: J() There are some tools to manipulate this jacobian.

Feel++ Keyword

Math Object

Description

detJ()

\$\det(J)\$

Determinant of jacobian matrix

invJT()

\$(J^{-1})^T\$

Transposed inverse of jacobian matrix