# Feel++

## Operators

### Operations

You can use the usual operations and logical operators.

### Two Valued Operators

 Feel++ Keyword Math Object Description Rank Dimension `jump(f)` $[f]=f_0\overrightarrow{N_0}+f_1\overrightarrow{N_1}$ jump of test function 0 $n \times 1$ $m=1$ `jump(f)` $[\overrightarrow{f}]=\overrightarrow{f_0}\cdot\overrightarrow{N_0}+\overrightarrow{f_1}\cdot\overrightarrow{N_1}$ jump of test function 0 $1 \times 1$ $m=2$ `jumpt(f)` $[f]=f_0\overrightarrow{N_0}+f_1\overrightarrow{N_1}$ jump of trial function 0 $n \times 1$ $m=1$ `jumpt(f)` $[\overrightarrow{f}]=\overrightarrow{f_0}\cdot\overrightarrow{N_0}+\overrightarrow{f_1}\cdot\overrightarrow{N_1}$ jump of trial function 0 $1 \times 1$ $m=2$ `jumpv(f)` $[f]=f_0\overrightarrow{N_0}+f_1\overrightarrow{N_1}$ jump of function evaluation 0 $n \times 1$ $m=1$ `jumpv(f)` $[\overrightarrow{f}]=\overrightarrow{f_0}\cdot\overrightarrow{N_0}+\overrightarrow{f_1}\cdot\overrightarrow{N_1}$ jump of function evaluation 0 $1 \times 1$ $m=2$ `average(f)` ${f}=\frac{1}{2}(f_0+f_1)$ average of test function rank$( f(\overrightarrow{x}))$ $n \times n$ $m=n$ `averaget(f)` ${f}=\frac{1}{2}(f_0+f_1)$ average of trial function rank$( f(\overrightarrow{x}))$ $n \times n$ $m=n$ `averagev(f)` ${f}=\frac{1}{2}(f_0+f_1)$ average of function evaluation rank$( f(\overrightarrow{x}))$ $n \times n$ $m=n$ `leftface(f)` $f_0$ left test function rank$( f(\overrightarrow{x}))$ $n \times n$ $m=n$ `leftfacet(f)` $f_0$ left trial function rank$( f(\overrightarrow{x}))$ $n \times n$ $m=n$ `leftfacev(f)` $f_0$ left function evaluation rank$( f(\overrightarrow{x}))$ $n \times n$ $m=n$ `rightface(f)` $f_1$ right test function rank$( f(\overrightarrow{x}))$ $n \times n$ $m=n$ `rightfacet(f)` $f_1$ right trial function rank$( f(\overrightarrow{x}))$ $n \times n$ $m=n$ `rightfacev(f)` $f_1$ right function evaluation rank$( f(\overrightarrow{x}))$ $n \times n$ $m=n$ `maxface(f)` $\max(f_0,f_1)$ maximum of right and left test function rank$( f(\overrightarrow{x}))$ $n \times p$ `maxfacet(f)` $\max(f_0,f_1)$ maximum of right and lef trial function rank$( f(\overrightarrow{x}))$ $n \times p$ `maxfacev(f)` $\max(f_0,f_1)$ maximum of right and left function evaluation rank$( f(\overrightarrow{x}))$ $n \times p$ `minface(f)` $\min(f_0,f_1)$ minimum of right and left test function rank$( f(\overrightarrow{x}))$ $n \times p$ `minfacet(f)` $\min(f_0,f_1)$ minimum of right and left trial function rank$( f(\overrightarrow{x}))$ $n \times p$ `minfacev(f)` $\min(f_0,f_1)$ minimum of right and left function evaluation rank$( f(\overrightarrow{x}))$ $n \times p$